Exogenous Activation of Invariant Natural Killer T Cells by α-Galactosylceramide Reduces Pneumococcal Outgrowth and Dissemination Postinfluenza
نویسندگان
چکیده
Influenza A virus infection can predispose to potentially devastating secondary bacterial infections. Invariant natural killer T (iNKT) cells are unconventional, lipid-reactive T lymphocytes that exert potent immunostimulatory functions. Using a mouse model of postinfluenza invasive secondary pneumococcal infection, we sought to establish whether α-galactosylceramide (α-GalCer [a potent iNKT cell agonist that is currently in clinical development]) could limit bacterial superinfection. Our results highlighted the presence of a critical time window during which α-GalCer treatment can trigger iNKT cell activation and influence resistance to postinfluenza secondary pneumococcal infection. Intranasal treatment with α-GalCer during the acute phase (on day 7) of influenza virus H3N2 and H1N1 infection failed to activate (gamma interferon [IFN-γ] and interleukin-17A [IL-17A]) iNKT cells; this effect was associated with a strongly reduced number of conventional CD103+ dendritic cells in the respiratory tract. In contrast, α-GalCer treatment during the early phase (on day 4) or during the resolution phase (day 14) of influenza was associated with lower pneumococcal outgrowth and dissemination. Less intense viral-bacterial pneumonia and a lower morbidity rate were observed in superinfected mice treated with both α-GalCer (day 14) and the corticosteroid dexamethasone. Our results open the way to alternative (nonantiviral/nonantibiotic) iNKT-cell-based approaches for limiting postinfluenza secondary bacterial infections. IMPORTANCE Despite the application of vaccination programs and antiviral drugs, influenza A virus (IAV) infection is responsible for widespread morbidity and mortality (500,000 deaths/year). Influenza infections can also result in sporadic pandemics that can be devastating: the 1918 pandemic led to the death of 50 million people. Severe bacterial infections are commonly associated with influenza and are significant contributors to the excess morbidity and mortality of influenza. Today's treatments of secondary bacterial (pneumococcal) infections are still not effective enough, and antibiotic resistance is a major issue. Hence, there is an urgent need for novel therapies. In the present study, we set out to evaluate the efficacy of α-galactosylceramide (α-GalCer)-a potent agonist of invariant NKT cells that is currently in clinical development-in a mouse model of postinfluenza, highly invasive pneumococcal pneumonia. Our data indicate that treatment with α-GalCer reduces susceptibility to superinfections and, when combined with the corticosteroid dexamethasone, reduces viral-bacterial pneumonia.
منابع مشابه
Key role for respiratory CD103(+) dendritic cells, IFN-γ, and IL-17 in protection against Streptococcus pneumoniae infection in response to α-galactosylceramide.
BACKGROUND Exogenous activation of pulmonary invariant natural killer T (iNKT) cells, a population of lipid-reactive αβ T lymphocytes, with use of mucosal α-galactosylceramide (α-GalCer) administration, is a promising approach to control respiratory bacterial infections. We undertook the present study to characterize mechanisms leading to α-GalCer-mediated protection against lethal infection wi...
متن کاملFunctional invariant natural killer T-cell and CD1d axis in chronic lymphocytic leukemia: implications for immunotherapy.
Invariant natural killer T cells recognize glycolipid antigens such as α-galactosylceramide presented by CD1d. In preclinical models of B-cell malignancies, α-galactosylceramide is an adjuvant to tumor vaccination, enhancing tumor-specific T-cell responses and prolonging survival. However, numerical and functional invariant natural killer T-cell defects exist in patients with some cancers. Our ...
متن کاملActivation of human invariant natural killer T cells with a thioglycoside analogue of α-galactosylceramide.
Activation of CD1d-restricted invariant NKT (iNKT) cells with the glycolipid α-galactosylceramide (α-GalCer) confers protection against disease in murine models, however, clinical trials in humans have had limited impact. We synthesized a novel thioglycoside analogue of α-GalCer, denoted α-S-GalCer, and tested its efficacy for stimulating human iNKT cells in vitro. α-S-GalCer stimulated cytokin...
متن کاملLiver Injury After Invariant NKT Cell Activation by Free Alpha-galactosylceramide and Alpha-galactosylceramide-loaded Dendritic Cells.
BACKGROUND/AIM Both free alpha-galactosylceramide (αGalCer) and αGalCer-loaded dendritic cells (DCG) activate invariant natural killer T (iNKT) cells to varying degrees, with αGalCer inducing liver injury. We sought to evaluate liver injury by these two pathways. MATERIALS AND METHODS Mice were injected with αGalCer or DCG followed by analysis of serum alanine transaminase (ALT) activity leve...
متن کاملCD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections
Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-gala...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016